Scientific direction Development of key enabling technologies
Transfer of knowledge to industry

PhD : selection by topics

Engineering science >> Instrumentation
1 proposition(s).

Design, development and evaluation of sensors based on electrical methods for detecting and quantifying airborne ultrafine particles

Département des Technologies des NanoMatériaux (LITEN)

Laboratoire de Nanocaractérisation et Nanosécurité



Research field: Air quality monitoring is a real societal challenge that leads to strong expectations from the public. Currently, there is no reliable low-cost particulate matter sensors that covers a wide range of particle size. Many optical sensors are reported but respond to particles larger than 300 nm by providing their mass concentration (PM10 and PM2.5). Only few ergonomic and accurate personal monitors allow the assessment of individual exposure to manufactured nanomaterials and ultrafine particles. This is indicative of a high potential for exploitation. Description of the research topic: We propose to develop particle microsensors offering granulometric sizing over the 5-300 nm range and the chemical composition of the collected material. The purpose of this PhD thesis is to develop, assess, theoretically and experimentally, the performances of an integrated device for the detection and the quantification of particles based on ion diffusion charging. The device is aiming to sort the particles according to their electrical mobility and to collect them selectively on a substrate according to size-resolved concentric rings. Quantitative analysis of particle charging and losses will be carried out. The electrical detection using electrometers will allow quantification in real time thanks to an appropriate signal processing algorithm. Several metrics of interest will be explored such as number-based concentration, LDSA (lung-deposited surface area) concentration and mass concentration. We propose the development of a simplified system allowing the monitoring of several channels (5-20 nm, 20-100 nm, 100-300 nm) in order to propose a solution able to determine and locate sources of ultrafine particles in real time (application to urban pollution).

Voir toutes nos offres